

Human-like Stochastic Motion Generation and Prediction

Norimichi Ukita Toyota Technological Institute, Japan

Intelligent Media

Motivation – Why stochastic motions? –

- Human motions are high-dimensional, complex, diverse, and stochastic.
- Deterministic models are not appropriate for representing such complex and stochastic motions.

Walking trajectory

Today's Topics

- 1. <u>Super-fast</u> task-agnostic probabilistic prediction
- 2. Physically-constrained human motion generation
- **3.** <u>Task-achievable</u> robot motion planning by refining retrieved motions

3. Task-achievable Robot Motion Planning by Refining Retrieved Motions

Takeru Oba and Norimichi Ukita

Task: Motion Prediction from an Image

d → 3D position and 3D rotation of the end-effector

Intelligent Media

Difficulty in Robot Motion Learning

- Stochasticity
 - Not only one but also several motions can achieve each task.
- Controllability
 - Complexity in articulated joint control
 - Similar motions can or cannot be achieved due to the limited range of joint motions.
- High precision
 - Small motion difference may disturb a task.
- Small number of training samples
 - Image generation >> Real robot motion planning
 - Robot motions are collected by manually controlling robots.

Intelligent Information Media

Difficulty in Robot Motion Learning

- Stochasticity
- Probabilistic models
 - Representing multiple task-achievable motions
- Controllability
- Retrieval-based motion planning
 - Motion optimization/refinement from real controllable motions
 - High precision
- High-fidelity motion refinement
 - Refinement in a high-resolution refinement space
 - Small number of training samples
- Generative models
 - Successful in-distribution sampling from a limited number of samples $_{\scriptscriptstyle 13}$

Data-Driven Stochastic Motion Evaluation and Optimization with Image by Spatially-Aligned Temporal Encoding

Takeru Oba and Norimichi Ukita ICRA2023

Intelligent Information Media

Our Solutions for Robot Motion Learning

- Probabilistic models
 - Representing multiple task-achievable motions
- Energy-Based Models (EBM)
- Retrieval-based motion planning
 - Motion optimization/refinement from real controllable motions
- Refining real samples in a supervised manner
- High-fidelity motion refinement
 - Refinement in a high-resolution refinement space
 - HR feature space by Spatially-aligned Temporal Encoding (STE)
- Generative models
 - Successful in-distribution sampling from a limited number of samples
 EBM augmented by VAE

Overview: EBM + Optimizer + Fusion

Go	al
1.	Evaluate a consistency between each optimized motion and the given image probabilistically.
2.	Optimize each motion for the environment expressed in the image.
3.	Fuse synchronized image an motion data in a high- dimensional feature space fo consistency evaluation.

1. EBM Training with Real Samples and Samples Augmented by VAE

• For training, the gradient of the EBM loss is expressed with motions sampled based on p(m|I).

$$\mathcal{L}_{EBM}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(-E_{\theta}(I^{i}, P^{i}) - \log Z_{\theta}(I^{i}) \right)$$

• This difficult sampling in the high-dimensional space is avoided by using real motion samples.

17

These motion samples are augmented from real training samples by VAE.

Why Traditional Models Fail to Grasp?

Media

1. EBM Training with Real Samples and Samples Augmented by VAE

• For training, the gradient of the EBM loss is expressed with motions sampled based on p(m|I).

$$\mathcal{L}_{EBM}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(-E_{\theta}(I^{i}, P^{i}) - \log Z_{\theta}(I^{i}) \right)$$

• This difficult sampling in the high-dimensional space is avoided by using real motion samples.

19

These motion samples are augmented from real training samples by VAE.

2. Optimizer w/o Gradient Descent in Supervised Manner

Experiments: Tasks

Close Box (**CB**)

Pick up Cup (**PC**)

Put Knife (**PK**)

Put Rubbish (\mathbf{PR})

Intelligent Information Media

Results: Task Success Rates

	CB	PC	PB	PK	PR	PU	RT	SW	TP
(a) Ours	97	89	85	51	85	25	32	74	94
(b) VAEBM [1]	64	88	81	27	35	10	32	48	77
(c) Ours w/Langevin [2]	71	77	83	0	46	11	0	18	77
(d) Ours w/ GD [3]	54	78	61	18	40	5	36	48	81
(e) Ours w/ GAP [4]	5	3	0	4	1	0	3	5	0
(f) Ours w/ ViT (Traditional)	0	0	0	1	1	1	4	0	2

[1] ICLR, 2021. [2] Bernoulli, 1996. [3] Neural networks , 2003. [4] CORL, 2021.

Results: Visual Comparison

Put Rubbish

Our

Gradient Descent

Langevin MCMC

VAEBM

20

Results: Detailed Visual Comparison

Intelligent Information Media

VAEBM

VAEBM

Concluding Remarks

Summary and Future Work

• Summary

- 1. Super-fast task-agnostic probabilistic prediction
- 2. Physically-constrained human motion
- 3. Robot motion planning with the initial state presented by an image

• Future Work

- 1. Extension to High-dimensional data
- 2. End-to-end network with differentiable physics simulator
- 3. For physically-realistic motion planning
 - 1. Physical & other constraints in optimization
 - 2. Domain gap between simulation and real data: Cyber-Physical systems